All Tools Bookmark

Share

http://online-toolz.com/tools/r-package-details.php?p=bagRboostR

Facebook Share Twitter Share

bagRboostR: Ensemble bagging and boosting classifiers

bagRboostR is a set of ensemble classifiers for multinomial classification. The bagging function is the implementation of Breiman's ensemble as described by Opitz & Maclin (1999). The boosting function is the implementation of Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME) created by Zhu et al (2006). Both bagging and SAMME implementations use randomForest as the weak classifier and expect a character outcome variable. Each ensemble classifier returns a character vector of predictions for the test set.

bagRboostR.pdf