All Tools Bookmark


Facebook Share Twitter Share

GAMens: Applies GAMbag, GAMrsm and GAMens Ensemble Classifiers for Binary Classification

Ensemble classifiers based upon generalized additive models for binary classification (De Bock et al. (2010) <doi:10.1016/j.csda.2009.12.013>). The ensembles implement Bagging (Breiman (1996) <doi:10.1023/A:1018054314350>), the Random Subspace Method (Ho (1998) <doi:10.1109/34.709601>), or both, and use Hastie and Tibshirani's (1990) generalized additive models (GAMs) as base classifiers. Once an ensemble classifier has been trained, it can be used for predictions on new data. A function for cross validation is also included.