All Tools Bookmark

Share

http://online-toolz.com/tools/r-package-details.php?p=deamer

Facebook Share Twitter Share

deamer: Deconvolution density estimation with adaptive methods for a variable prone to measurement error

deamer provides deconvolution algorithms for the non-parametric estimation of the density f of an error-prone variable x with additive noise e. The model is y = x + e where the noisy variable y is observed, while x is unobserved. Estimation may be performed for i) a known density of the error ii) with an auxiliary sample of pure noise and iii) with an auxiliary sample of replicate (repeated) measurements. Estimation is performed using adaptive model selection and penalized contrasts.

deamer.pdf